Source code for mpqp.tools.circuit

from __future__ import annotations

from typing import TYPE_CHECKING, Optional, Sequence

import numpy as np
from numpy.random import Generator
from qiskit import QuantumCircuit
from qiskit.circuit.quantumcircuitdata import CircuitInstruction
from typeguard import typechecked

from mpqp.core.circuit import QCircuit
from mpqp.core.instruction.gates.gate import Gate, SingleQubitGate
from mpqp.core.instruction.gates.native_gates import (
    NATIVE_GATES,
    TOF,
    CRk,
    P,
    Rk,
    RotationGate,
    Rx,
    Ry,
    Rz,
    U,
)
from mpqp.core.instruction.gates.parametrized_gate import ParametrizedGate
from mpqp.noise.noise_model import (
    NOISE_MODELS,
    AmplitudeDamping,
    BitFlip,
    Dephasing,
    Depolarizing,
    NoiseModel,
    PhaseDamping,
)
from mpqp.tools.maths import closest_unitary

if TYPE_CHECKING:
    from qiskit import QuantumCircuit
    from qiskit.circuit.quantumcircuitdata import CircuitInstruction


[docs]@typechecked def random_circuit( gate_classes: Optional[Sequence[type[Gate]]] = None, nb_qubits: int = 5, nb_gates: Optional[int] = None, seed: Optional[int] = None, ): """This function creates a QCircuit with a specified number of qubits and gates. The gates are chosen randomly from the provided list of native gate classes. args: nb_qubits : Number of qubits in the circuit. gate_classes : List of native gate classes to use in the circuit. nb_gates : Number of gates to add to the circuit. seed: Seed used to initialize the random number generation. Returns: A quantum circuit with the specified number of qubits and randomly chosen gates. Raises: ValueError: If the number of qubits is too low for the specified gates. Examples: >>> print(random_circuit([U, TOF], 3)) # doctest: +NORMALIZE_WHITESPACE ┌───┐┌───┐ ┌───┐ ┌───┐┌───┐ q_0: ┤ X ├┤ X ├──■──┤ X ├────────────────────────────┤ X ├┤ X ├ └─┬─┘└─┬─┘┌─┴─┐└─┬─┘ └─┬─┘└─┬─┘ q_1: ──■────■──┤ X ├──■────────────────────────────────■────■── │ │ └─┬─┘ │ ┌──────────────────────────┐ │ │ q_2: ──■────■────■────■──┤ U(0.31076,5.5951,6.2613) ├──■────■── └──────────────────────────┘ >>> print(random_circuit([U, TOF], 3, seed=123)) # doctest: +NORMALIZE_WHITESPACE ┌───┐ ┌───┐ q_0: ──■──┤ X ├───────────────────────────┤ X ├ ┌─┴─┐└─┬─┘┌─────────────────────────┐└─┬─┘ q_1: ┤ X ├──■──┤ U(5.1025,5.8015,1.7378) ├──■── └─┬─┘ │ ├─────────────────────────┤ │ q_2: ──■────■──┤ U(5.5914,3.2231,1.5392) ├──■── └─────────────────────────┘ """ rng = np.random.default_rng(seed) if nb_gates is None: nb_gates = int(rng.integers(5, 10)) qcircuit = QCircuit(nb_qubits) for _ in range(nb_gates): qcircuit.add(random_gate(gate_classes, nb_qubits, rng)) return qcircuit
[docs]@typechecked def random_gate( gate_classes: Optional[Sequence[type[Gate]]] = None, nb_qubits: int = 5, seed: Optional[int | Generator] = None, ) -> Gate: """This function creates a gate with a specified number of qubits. The gate are chosen randomly from the provided list of native gate classes. args: nb_qubits : Number of qubits in the circuit. gate_classes : List of native gate classes to use in the circuit. Returns: A quantum circuit with the specified number of qubits and randomly chosen gates. Raises: ValueError: If the number of qubits is too low for the specified gates. Examples: >>> random_gate([U, TOF], 3) # doctest: +SKIP U(2.067365317109373, 0.18652872274018245, 0.443968374745352, 0) >>> random_gate(nb_qubits=4) # doctest: +SKIP SWAP(3, 1) """ rng = np.random.default_rng(seed) if gate_classes is None: gate_classes = [] for gate in NATIVE_GATES: if TYPE_CHECKING: assert isinstance(gate.nb_qubits, int) if gate.nb_qubits <= nb_qubits: gate_classes.append(gate) qubits = list(range(nb_qubits)) if any( not issubclass(gate, SingleQubitGate) and ((gate == TOF and nb_qubits <= 2) or nb_qubits <= 1) for gate in gate_classes ): raise ValueError("number of qubits too low for this gates") gate_class = rng.choice(np.array(gate_classes)) target = rng.choice(qubits).item() if issubclass(gate_class, SingleQubitGate): if issubclass(gate_class, ParametrizedGate): if issubclass(gate_class, U): return U( rng.uniform(0, 2 * np.pi), rng.uniform(0, 2 * np.pi), rng.uniform(0, 2 * np.pi), target, ) elif issubclass(gate_class, Rk): return Rk(rng.integers(1, 10), target) elif issubclass(gate_class, RotationGate): if TYPE_CHECKING: assert issubclass(gate_class, (Rx, Ry, Rz, P)) return gate_class(rng.uniform(0, 2 * np.pi), target) else: raise ValueError else: return gate_class(target) else: control = rng.choice(list(set(qubits) - {target})).item() if issubclass(gate_class, ParametrizedGate): if TYPE_CHECKING: assert issubclass(gate_class, CRk) return gate_class( rng.integers(1, 10), control, target, ) elif issubclass(gate_class, TOF): control2 = rng.choice(list(set(qubits) - {target, control})).item() return TOF([control, control2], target) else: return gate_class(control, target)
[docs]def random_noise( noise_model: Optional[Sequence[type[NoiseModel]]] = None, seed: Optional[int | Generator] = None, ) -> NoiseModel: """This function creates a noise model. The noise are chosen randomly from the provided list of noise model. args: noise_model : List of noise model. Returns: A quantum circuit with the specified number of qubits and randomly chosen gates. Raises: ValueError: If the number of qubits is too low for the specified gates. Examples: >>> random_noise() # doctest: +SKIP Depolarizing(0.37785041428875576) """ rng = np.random.default_rng(seed) if noise_model is None: noise_model = NOISE_MODELS noise = rng.choice(np.array(noise_model)) if issubclass(noise, AmplitudeDamping): prob = rng.uniform(0, 1) return AmplitudeDamping(prob) elif issubclass(noise, BitFlip): prob = rng.uniform(0, 0.5) return BitFlip(prob) elif issubclass(noise, Dephasing): prob = rng.uniform(0, 1) return Depolarizing(prob) elif issubclass(noise, Depolarizing): prob = rng.uniform(0, 0.75) return Depolarizing(prob) elif issubclass(noise, PhaseDamping): gamma = rng.uniform(0, 1) return PhaseDamping(gamma) else: raise NotImplementedError(f"{noise} model not implemented")
[docs]@typechecked def compute_expected_matrix(qcircuit: QCircuit): """ Computes the expected matrix resulting from applying single-qubit gates in reverse order on a quantum circuit. args: qcircuit : The quantum circuit object containing instructions. returns: Expected matrix resulting from applying the gates. raises: ValueError: If any gate in the circuit is not a SingleQubitGate. """ from sympy import N from mpqp.core.instruction.gates.gate import Gate, SingleQubitGate gates = [ instruction for instruction in qcircuit.instructions if isinstance(instruction, Gate) ] nb_qubits = qcircuit.nb_qubits result_matrix = np.eye(2**nb_qubits, dtype=complex) for gate in reversed(gates): if not isinstance(gate, SingleQubitGate): raise ValueError( f"Unsupported gate: {type(gate)} only SingleQubitGate can be computed for now" ) matrix = np.eye(2**nb_qubits, dtype=complex) gate_matrix = gate.to_matrix() index = gate.targets[0] matrix = np.kron( np.eye(2**index, dtype=complex), np.kron(gate_matrix, np.eye(2 ** (nb_qubits - index - 1), dtype=complex)), ) result_matrix = np.dot(result_matrix, matrix) return np.vectorize(N)(result_matrix).astype(complex)
[docs]@typechecked def replace_custom_gate( custom_unitary: "CircuitInstruction", nb_qubits: int ) -> tuple["QuantumCircuit", float]: """Decompose and replace the (custom) qiskit unitary given in parameter by a qiskit `QuantumCircuit` composed of ``U`` and ``CX`` gates. Note: When using Qiskit, a global phase is introduced (related to usage of ``u`` in OpenQASM2). This may be problematic in some cases, so this function also returns the global phase introduced so it can be corrected later on. Args: custom_unitary: instruction containing the custom unitary operator. nb_qubits: Number of qubits of the circuit from which the unitary instruction was taken. Returns: A circuit containing the decomposition of the unitary in terms of gates ``U`` and ``CX``, and the global phase used to correct the statevector if need be. """ from qiskit import QuantumCircuit, transpile from qiskit.exceptions import QiskitError transpilation_circuit = QuantumCircuit(nb_qubits) transpilation_circuit.append(custom_unitary) try: transpiled = transpile(transpilation_circuit, basis_gates=['u', 'cx']) except QiskitError as e: # if the error is arising from TwoQubitWeylDecomposition, we replace the # matrix by the closest unitary if "TwoQubitWeylDecomposition" in str(e): custom_unitary.operation.params[0] = closest_unitary( custom_unitary.operation.params[0] ) transpiled = transpile(transpilation_circuit, basis_gates=['u', 'cx']) else: raise e return transpiled, transpiled.global_phase